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Abstract

Elliptic curves cryptosystem is a potential public key cryp-
tosystem to become the dominant encryption method for in-
Sformation and communication system. This cryptosystem
has the same security level compare with other public key
cryptosystem, in spite of the relatively short key length that
is employed. A short key length makes the encryption and
decryption process much faster, lower bandwith for data
and more efficient implementation. An implementation of
elliptic curves cryptosystem needs a high perfomance finite
field arithmetic module. In this paper we will discuss an ar-
chitecture of finite field Fy2n multiplier using normal basis
representations. Proposed architecture offers lower compu-
tational time and lower complexity architecture compared
with other architecture.

" 1. INTRODUCTION

As the use of internet for business continues to grow, the
need of secure and easy to use cryptosystem technologies
is becoming more and more critical. Advanced cryptosys-
tem technologies need high performance public key cryp-
tosystems. Elliptic curves cryptosystem is a potential pub-
lic key cryptosystem to become the dominant encryption
method for information and communication system. Ellip-
tic curves cryptosystem was originally developed by Neil
Koblitz [1] and Victor S. Miller [2]. Nowadays several pub-
lic key cryptography schemes using elliptic curves group
have been standarized [3].

Using elliptic curves in constructing public key cryp-
tosystem gives several advantages compare with other pub-
lic key cryptosystems. This cryptosystem use elliptic curves
discrete logarithm problem as base of security. Attack on el-
liptic curves discrete logarithm problem appear to be much
harder and more time consuming compare with attack on
other hard mathematical problem. Hence elliptic curves
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cryptosystem can match security of other public key cryp-
tosystem with using short key length. A short key length
makes the encryption and decryption process much faster,
lower bandwith for data and more efficient implementation.

Performing encryption and decryption process using el-
liptic curves cryptosystem need point arithmetic computa-
tion on selecting elliptic curve and finite field arithmetic
computation [4] [5]. Point arithmetic computations need fi-
nite field arithmetic computations. Hence implementation
of elliptic curves cryptosystem needs a high perfomance
computational resource to perform finite field arithmetic .

For finite field representations, prime finite field (¥},) or
binary finite field (F>=) can be used. Binary finite field is
more suitable and more practice for hardware implementa-
tions rather than prime finite fields. Two common basis can
be used for binary finite field are normal basis representa-
tion and polynomial basis representation. Normal basis of-
fer several advantages than polynomial basis, therefore we
focus on this reperesentation for designing finite field arith-
metic computational resource.

Two main operations of finite field arithmetic are ad-
dition and multiplication. In normal basis representation,
finite field addition is simply perform by bitwise XOR-ing
the vector representation. Therefore design of finite field
adder with normal basis representation is very simple. Fi-
nite field multiplication in normal basis is more complicated
so that design of the multiplier is more dificult. Several fac-
tors must be considered when designing finite field multi-
plier: computation time, circuit area and circuit complexity.

In this paper we propose an architecture of finite field
Fy» multiplier. This multiplier use finite field with normal
basis representation and 7 = 2n (n odd). Proposed archi-
tecture offers lower computational time and lower complex-
ity architecture compared with other architecture.
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2. NORMAL BASIS REPRESENTATIONS

Finite field F>= can be viewed as a vector space of dimen-
sion n over Fy. There exists a set of mn elements o, oy,
...y Qe such that each o € Fym can be written uniquely
in the form

m—1 N .
o= Z a;a;, where a; € (0,1) 03
i=0
In hardware a field element can be stored in a shift reg-
ister with dimension 7 because « can be represented as the
bit vector (ag, a1, ..., Gm_1).
A normal basis Fy= over F; is a basis of the form

{ﬁ7ﬂ21ﬂ223"' aﬁzm—l}’ WhCrC,B € Fzm

3 is the generator of the normal basis. Given any ele-
ment @ € Fym , we can write a@ = Z;’;Bl a;0%, where
a; € 0, 1.

On normal basis representation, addition and squaring
are simple operation. Addition of field elements is simply
perfomed by bitwise XOR-ing the vector representation and
takes only one clock cycle. Squaring is perfomed by using
linear operator property in Fy~, thus

m—1 m—1
2 _ a2l ) 21 )
=3 af =3 aif @)
i=0 i=0

Squaring can be performed by simple rotation of the
vector representation. This operation can be easily imple-
mented using cylic shift register.

Multiplication in normal basis is more complicated. We
will discuss more deeply about this muitiplication and the
implementation of this operation in the next section.

3. Fom OPTIMAL NORMAL BASIS MULTIPLIER

Let A = ((lo,(ll,...,am_l), B = (bo,l)l,...,bm_l) be
arbitrary elements in Fom, andletC = A-B = (¢, €15 - -,

Cm—1 ) . Then

m—1 m~1m—-1 .
ok 9% 0d
C=Y ap => > aib;p*p’ €)
k=0 =0 3=0
We can derive above equations to determine ¢, as follow
m—1lm-1
- b A0 4)
Ck = AitkOj+k A5 (
i=0 j=0

Equations (4) can be implemented using Massey-Omura
multiplier. Massey Omura use a logic circuit with inputs
A and B to compute ¢o. Using same logic circuit, we can
rotate A and B k times to compute c¢,. Normal basis rep-
resentation said optimal (Optimal Normal Basis/ONB) if

C(N) = m—1. C(N) denote the number of nonzero terms
in ,\g?j and determine complexity of logic circuit for multi-
plications. Figure 1 illustrate Fys multiplier using Massey

Omura structure.
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Figure 1: ONB Fj6 multiplier (Massey Omura)

Agnew et. al. [8] proposed an alternative architecture.
Equations 4 can be written as

m~—1 m—1
Cp = Z bj+k Z )\g_?)ai+k (5)
7=0 i=0
Let
m—1
F:,'(k) = bjtk Z /\g)auk (0)
=0

For fixed j and and variable k, the functions F are re-
lated by the cyclic permutation of the subscript. Also

¢ = ZF.(k),kZO,l,...,'rrL—l. » @)

The functions ng) are referred to as terms. For non
negative integers ¢, let

m—1
k 0

FJ( () = bjre Z )‘Ej)ai-HH—t ®)

i=0
Let Ay, Ay, ..., Ay and By, By, . .., By, be cells of cy-
clic shift registers A and B, respectively. Define logic cells
Ci,1=0,1,2,...,m — 1 as follow. In cells Cy, let there

be a logical circuit which will compute the expression

m—1
T, (£) = Bjaas (1) D MY A (1) ©
, i=0
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where Ap(t) and By (t) are the contents of cells A, and
B, of A and B, respectively, at time . This cell also contain
a storage register Ry which can store previously calculated
results and can add its contents Ry, to the value of T}, calcu-
lated above.
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Figure 2: ONB Fjs multiplier (Agnew et. al.)

Figure 2 illustrate register organization and cell struc-
ture of Fys multiplier using Agnew et. al.’s architecture.
The system is initialized by loading the values a; and b; in
the respective cells of A; and By, respectively, and the regis-
ter R of cells C; are loaded with zero fori = 0,1,...,m—1.
Attmet, fort = 0,1,...,m — 1, the term Ty (¢) is calcu-
lated in cell C(t) using the current contents of the A and
B registers. The current contents of Ry are XOR’ed with
Ty (t) and the results are stored in register Ry11 mod n. At
the end of time ¢ = 7n — 1, the register of Ry, contain ¢,
k=0,1,...,m~1.

4. EXTENSION FIELD

Finite field normal basis Fy+ over F, can be extended to
produce normal basis Fyms over Fom. Suppose m and k are
positive integers such that ged(rn, k)=1. To produce optimal
normal basis Fym« over Fom when given an optimal normal
basis Fy« over F, proceed as follows.

Let K = F,. and M = Fy» be viewed as subfields
of MK = FZ""" Let N = {/81/82a6221~ : 'aﬂlkAl} be a
normal basis for K over F, viewed as a subfield of M K.
Let 8; = 82,0 < < k — 1. Since ged(m, k)=1 then N is
lineary independent over M and is an optimal normal basis
for MK over M. Then the set X = {E:’;Bl a;B% ;€
M} has cardinality 2™¥, and hence is M K.

If :
a=afo+aif+- -+ ar_108k—1 (10)

then
& =dl_Po+adf+--+ai_yBk-1 (11)

Hence, in the coordinate representations for Fymi over
Fym with respect to IV, addition and squaring operations can
be perfomed efficiently. Addition is perfomed by adding
each ‘the individual coordinates. Squaring is perfomed by
squaring each the individual coordinates together with a cy-
clic shift of the coordinate themselves.

Because of the optimality of the assumed basis for Fye
over F, general multiplication is relatively efficient given
efficient multiplier for Fo~. We use this idea by setting k =
2 and m = n (n odd) to design F,2. optimal normal basis
multiplier.

5. Fy:x OPTIMAL NORMAL BASIS MULTIPLIER

Based on extension field idea, we proposed a hardware ar-
chitecture to perform Fs2. (n odd) optimal normal basis
multiplier. Using modification on architecture proposed by
Agnew et. al. can be obtained faster computational time
and lower complexity architecture.

Structure of cell on registers A, B and C are modified to
implement Fy2. multiplier. Each cells contain two register
to store each individual coordinates and width of the regis-
ters A, B and C are nn. F32 optimal normal basis multiplier
is used in each cell of register C to implement proposed
architecture. Figure 3 illustrate F32 optimal normal basis
multiplier used in cell of register C

-1

AL -
ﬂ2 ]

I~ C
b, 2

Figure 3: Fy2 multiplier

Figure 4 illustrates register organization and cell struc-
ture of Fys multiplier using proposed architecture. The net-
work is considered to operate with the same operation as
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Agnew et. al’s architecture. Using extension field idea,
complexity of inteconection between registers A and B to
register C can be reduced from 2m — 1 to 2n — 1 (m = 2n).
Also computation time can be reduced from m to m/2.
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Figure 4: ONB F,s multiplier (proposed)

6. CONCLUSION

Table 1 shows comparison of proposed architecture com-
pare with Massey Omura’s structure and Agnew et. al’s
architecture. The proposed architecture offer lower com-
putational time and lower complexity architecture compare
with other architectures.

Proposed | Massey | Agnew
Omura
Computation m/2 m m
time
Complexity m-1 2m-1 2m-1
Area:
FF 3m 3m 3m
XOR Tm/2 2m-2 2m
AND 2m 2m-1 m

Table 1: Comparison (m=2n)

Proposed architecture can be implemented efficiently to
obtain high perfomance finite field computational resource.

The computational resource can be used to implement el-
liptic curves cryptosystem scheme. As an example elliptic
curves cryptosystem using finite field Fyies (n = 83) arith-
metic chip with key length 166 bit has the same security
with current public key cryptosystem with key length 1024
bit.

Future work we use the proposed architecture to im-
plement finite field arithmetic chip using SCMOS standard
cell technology. The finite field arithmetic chip can be used
to implement practical implementation elliptic curves cryp-
tosystem.
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