
www.ednmag.com February 15, 2001 | edn 131

SYSTEM DESIGNERS FIGHT NOISE WITH ERROR-CORRECTING

CODES THAT ADD EXTRA INFORMATION TO A TRANSMITTED

SIGNAL, INCREASING THE RECEIVER’S PROBABILITY OF

RECOVERING CORRECT DATA.

FEC (forward-error-correction) techniques
correct errors at the receiver end of digital com-
munications systems. In contrast with error-de-

tection and retransmission techniques, FEC requires
only a one-way link, and its parity bits target both
error detection and correction. Figure 1 shows a typ-
ical FEC communication system. The transmitter
encodes the information before modulating and
sending the signal through the channel. The com-
munications channel introduces noise such as
AWGN (additive white Gaussian noise) to the trans-
mitted signal. The receiver demodulates the cor-
rupted information, which a decoder then process-
es, to retrieve the original information. You can
realize the FEC techniques on block codes and con-
volutional codes. Some applications of FEC include
CD and DVD players, high-definition TV, data-stor-
age systems, wireless communications, satellite com-
munications, and modem technologies.

Designers have implemented FEC techniques in
application-specific-standard products, ASICs,
DSPs, and FPGAs. (“FPGA” here denotes a recon-
figurable architecture.) Application-specific-stan-
dard products meet performance requirements but
provide no flexibility. DSPs, on the other hand, pro-
vide flexibility but lack performance. Designers fac-
ing space and power constraints will go for an ASIC,
but inflexibility and the demands for a faster time
to market in some cases make this alternative unat-
tractive. FECs suit FPGAs because
they have efficient paral-
lel architectures, you can
reconfigure them without non-
recurring-engineering costs, their
performance is always improving,
and FEC cores for FPGAs are in-
expensive.

You can implement FEC tech-
niques for linear block codes

(Reed-Solomon codecs) and convolutional codes
(Viterbi codecs). To understand this general imple-
mentation, look at the hardware behind these error-
correction processes. The sidebar “Viterbi-codec
definitions” contains a Viterbi algorithm explained
in terms of its hardware. You can also tailor algo-
rithms for hardware efficiency. Part two of this arti-
cle discusses the Reed-Solomon-codec implementa-
tion. Digital design with reconfigurable architectures
is often a daunting task because good designs de-
mand sound design practices as well as an intimate
understanding of both the tools and the silicon.Also,
reconfigurable architectures suit some applications,
such as pipelined designs, and not others, such as
pulsed-mode designs.

CONVOLUTIONAL ENCODERS

As previously discussed, an encoder at the trans-
mitter end adds redundancy to the information be-
ing sent. Figure 2 shows an implementation with a
code rate of 1/2 and K53. The figure shows that con-
volutionally encoding the data is fairly simple; you
do it using shift registers and modulo-2 addition.
The connections between the registers and the
adders give rise to the characteristic of the code, and
the change in connections therefore gives rise to a
different code. Furthermore, a practical system must
determine the validity of the data at the input and
the output. The control unit serves this purpose. In

Self-correcting codes
conquer noise
Part one: Viterbi codecs

INFORMATION

INFORMATION

ENCODE

DECODE

MODULATE

DEMODULATE

An error-correcting communication system adds information at the transmitter to
fight noise-data corruption.

F igure 1

designfeature By Syed Shahzad Shah, Saqib Yaqub, and Faisal Suleman, Chameleon Logics

designfeature Viterbi codecs

132 edn | February 15, 2001 www.ednmag.com

general, the encoder needs K21 flush bits
to ensure that the message shifts the full
length. You can easily implement this
type of encoder in any reconfigurable ar-
chitecture. The polynomial generators
are g1511X1X2; g2511X2.

HARD-DECISION VITERBI DECODING

The first step in the Viterbi-decoding
algorithm requires calculation of the
branch-metric (see sidebar “The Viterbi-
decoding algorithm”). The branch met-
ric is the distance from the received code
word to all the possible branch words.
You can derive the branch word from the
trellis or state diagram; the branch word
depends on the constraint length, the
generator matrix, and the code rate. In
this case, the possible branch words are
00,01,10, and 11. The distance from

branch word 11 to the re-
ceived sequence is
called Ham_11,
and others are similarly
named. If you apply this
logic to a truth table, you
will realize that a half adder
with simple logic imple-
ments the truth table in
hardware. Figure 3a shows
the hardware realization of
this unit. FPGAs can real-
ize the logic in Figure 3b
by storing the hamming
distances in ROM look-up
tables. This technique min-
imizes the hardware re-
quired to implement a
large number of branch words.

The second step of the Viterbi decod-
ing algorithm, the ACS (add-compare-
select) unit, is the heart of the process

You can implement a Viterbi encoder with code rate 1/2 and
K553 with shift registers and modulo-2 addition.

DATA_IN

000...... FF1 FF2 FF3

ENC_OUT(1)

ENC_OUT(0)
VALID_0

+

+

CONTROL
UNIT

VALID_I

F igure 2

You can implement the Viterbi branch-metric-unit calculation with half adders (a) and ROM look-up tables (b) to store the hamming distances.

(a) (b)

ADDER
HAM_11

HAM_00

ADDER
HAM_10

ADDER
HAM_01

ADDER
HAM_00

B(0)

B(1)

HAM_01

HAM_10

HAM_11

F igure 3

VITERBI-CODEC DEFINITIONS
The following terms are vital to
the understanding of convolu-
tional codes.

CCoonnssttrraaiinntt lleennggtthh: This num-
ber, called K, represents the
number of k-bit shifts over which
a single information bit can influ-
ence the encoder output. Simply
put, constraint length is the num-
ber of bits that the encoder uses
to encode n bit. The computa-
tional requirements grow expo-
nentially as a function of con-

straint length, so, in practice,
the constraint length is limited to
9 bits or less. A greater value of
K means more redundancy,
which therefore results in better
noise immunity. Code rate is
fixed, and K varies to control the
redundancy.

CCooddee rraattee: K bits enter the
Viterbi encoder; and n bits leave
the encoder; therefore, the code
rate is K/n. For example, in rate
1/2 code (1 bit in, 2 bits out),

each bit entering the encoder
leaves the encoder with 2 bits.
Typical values are: 1/2, 1/3, and
2/3. Error-correcting capability
and hardware complexity in-
crease as K/n decreases.

HHaarrdd--ddeecciissiioonn//ssoofftt--ddeecciissiioonn
ddeeccooddiinngg: The demodulator
gives information to the decoder.
Hard-decision decoding means
that the demodulator is quan-
tized to two levels: zero and one.
If you derive more than two

quantization levels from the de-
modulator, then the decoder is
soft-decision decoding. Hard-de-
cision decoding infers a perform-
ance loss of 2 to 3 dB over soft-
decision decoding.

GGeenneerraattoorr ppoollyynnoommiiaall: A gen-
erator polynomial specifies the
encoder connections. Each poly-
nomial is of degree K21 or less
and specifies the connections of
the shift register and the modu-
lo-2 adder.

designfeature Viterbi codecs

134 edn | February 15, 2001 www.ednmag.com

and dictates the performance of the de-
coder. The ACS operation for
each new state in the trellis per-
forms the addition, comparison, and se-
lection of the smallest path metric. Dig-
ital realizations represent path metrics as
fixed-point values, and, therefore, path-
metric normalization is necessary to pre-
vent overflow for hard decisions and un-
derflow for soft decisions during the
updating and accumulation of the path
metrics. Different methods of normal-
ization exist (Reference 1). Fixed-shift
methods exploit an important
property of path metrics in an
ACS unit. That is, the magnitude of the
path metrics is unlimited, yet a fixed
number limits the difference between
them. The following equations can help
you calculate this fixed number: D5code
rate*(K21), and BOP5ceil(log

2
(D11))

+1, where BOP is the bit width of the
path metric, code rate is the inverse of
K/n, and ceil is the function. For code
rate51/2, K53, and BOP53, these val-
ues mean that the maximum theoretical
difference of path metrics does not ex-
ceed 7. Also, an extra bit at the most sig-
nificant bits is necessary in this case to
maintain precision. When all the path
metrics have 1 at the most significant
bits, you can use simple logic to
normalize the ones to zeros. This
normalization has no effect on these re-
sults, because you are interested only in
the differences between these metrics.
For example, for the arbitrary path met-
rics 16, 19, 20, and 16, the results are 0,
3, 4, and 0.

A portion of the trellis diagram shows
how you can extract the resulting hard-
ware (Figure 4). The trellis shows that
two paths reach each node or state. You
add the hamming distance from the
BMU to the path metric. Therefore, each
node needs two 4-bit adders to directly
translate the trellis node into hardware.
Figure 5 shows that the upper inputs to
the adder are the hamming distances
from the BMU with zeros added. The
lower bits to the adder are the path met-
rics (previous branch metrics). A com-
parator then compares the resulting
path metrics, and the lesser one is the
output from the ACS unit. To exactly
duplicate the trellis diagram and pro-
vide feedback, you must place registers
at the outputs.

The constraint length of K53 has four
states, and for each state you need four
slices of hardware. You can obtain the
connection between these slices by in-
specting the trellis shown in Figure 6.
Your hardware implements the nodes
that two paths enter. For example, node
1 calculates the path metric by feeding
back its own value and feedback from
node 3. The connections in Figure 6 re-
sult in the hardware shown in Figure 7.
These connections ensure that you cor-
rectly add the previous path metrics to
the current branch metric. The outputs

from the ACS slices go to another unit,
which simply finds the state having the
smallest path metric. That state is the
output of the ACS unit.

MODULO-NORMALIZATION TECHNIQUE

You must represent numbers in a 2’s-
complement format to apply the modu-
lo- normalization technique. The metric
is normalized inside the 2’s-complement
adders in the ACS slice. If M

i
represents

the surviving path metric,
then you can represent the
normalized path metric,
M

i
(output of the adder),

as (M
i
1C/2)Mod C2C/2.

The number of bits that
the adder requires in this
case remains the same.
This situation is possible
because you can normalize
the hamming distances.
This method suits both
hard- and soft-decision
encoding. However, for
soft decisions, you need
not normalize the Euclid-
ean distance. In Figure 5,
you cannot use the same
comparator for this calcu-

lation, either signed or unsigned; how-
ever, a 2’s-complement subtracter works.
The advantage of this method is that it
eliminates the logic that normalization
requires in a fixed-shift method; there-
fore, it improves both FPGA speed and
the amount of chip area consumed.

The cost of an FPGA relates directly to
its resources; therefore, it is important to
note that the coding style, synthesis tool,
back-end-implementation software, and
FPGA architecture directly affect the
pricing. For ACS units with larger values
for K, you need 2K-1 ACS slices. If per-
formance is not an issue, you can use two
ACS slices for K59 and code rate51/2;
however, you’ll need more complex con-
trol.

FPGAs efficiently implement adders.
Higher code rates and larger values of K
need 5- or 6-bit or even larger adders for
the ACS slices. Adder implementation
depends on the FPGA architecture. To
accelerate and condense arithmetic func-
tions, such as adding and counting,
Xilinx (www.xilinx.com) and Altera
(www.altera.com) FPGAs contain dedi-
cated, hard-wired, fast carry chains. The

A portion of the trellis diagram shows that two
paths reach each node or state.

00

01

BRANCH WORD=00

BRANCH W
ORD=11

F igure 4

The trellis diagram for a constraint length K553
has four states.

F igure 6

Translating the trellis node into hardware requires two 4-bit
adders and a comparator.

ADDER 1

4

4

ADDER 1

4

4

44

4

REGISTER

REGISTER
COMPARATOR

F igure 5

designfeature Viterbi codecs

136 edn | February 15, 2001 www.ednmag.com

advantages of these carry chains are that
they are faster than most other
fast-carry schemes and using
them eliminates the need to use the
FPGA’s look-up table. Hence, these units
optimize both speed and size. Imple-
menting ripple-carry adders with dedi-
cated carry units is the best choice for
adders with as many as 32 bits. You can
use other fast-carry schemes together
with the segments of ripple-carry adders
for adders with more than 32-bits. Atmel
(www.atmel.com) and Actel (www.
actel.com) ripple-carry adders are the
simplest and most compact, but a carry
that must ripple through the design of
the adder seriously limits their perform-
ance. A carry-select adder, on the other
hand, improves speed by 40 to
90% by performing additions in
parallel and reducing the maximum car-
ry path.

PATH MEMORY AND DECISION TRACE-BACK

The ACS unit at each unit of time gives
you information about the survived path
of the two paths entering each node. A 1
at this output means that you must retain
the lower path of Figure 4. The ACS unit
repeats until the end of the trellis (the
third step of the Viterbi Algorithm), and
you keep saving the information that the
ACS provides.

Two methods exist for saving the in-
formation and making a decision based
on that saved information. The first of
these methods is the register exchange,
which implements the trellis structure
directly in hardware. It requires a bank of
L*2K-1(depth of trellis) registers. Each
bank is associated with a state. You in-
terconnect these registers in the same
manner as you do the ACS elements.You
determine the hardware requirement by
multiplying L by the number of states.
Therefore, you need 60 multiplexed reg-
isters for K53 and code rate=1/2 if L=15.
An FPGA with two registers per logic el-
ement consumes 30 logic elements. This
method requires more FPGA resources
as the trellis depth, L, increases, so it is
unsuitable for larger values of K that re-
quire more trellis depth.

The second method is the trace-back-
based decision unit, which is more effi-
cient and requires fewer FPGA resources.
You can implement the storage in RAM.
The most efficient way to implement
memory in an SRAM FPGA is by using

look-up tables. You can use them as
RAMs or ROMs or for implementing
combinational-logic functions. In a Lu-
cent (www.lucent.com) FPGA, for exam-
ple, each logic element can implement
two RAM or ROM arrays: a single 1634
element or two 1632 memory blocks.
You can use multiple logic elements to
implement other array sizes, such as
1638, 3234, and 6438. Xilinx FPGAs
implement 1632 RAM or 3231 in one
configurable-logic block with support for
larger memories. The EDA tools make it
easy to implement RAMs in FPGAs.

The 1634 RAM stores decisions from
the four-ACS unit, or comparator out-

put, at each unit of time (Figure 4). This
RAM is now called the path memory.
Thus, path memory is the set of se-
quences of decision bits that lead to cur-
rent state at each unit of time. The size
of the path memory is a direct replica of
the trellis and, in this case, is limited to
five constraint lengths. Also, higher code
rates generally require greater path-
memory depth than low rates. The row
forms the time, and the state forms the
column. This method of implementation
is more efficient than moving an entire
path from one memory location to an-
other. The control unit in Figure 8 gen-
erates the addresses and other functions,

Connections for multiple add-compare-select slices ensure the correct addition of the previous
path metrics with the current branch metric.

ADD-
COMPARE-

SELECT
SLICE

ADD-
COMPARE-

SELECT
SLICE

ADD-
COMPARE-

SELECT
SLICE

ADD-
COMPARE-

SELECT
SLICE

F igure 7

The 16334 RAM stores decisions from the add-compare-select unit for each unit of time, and the
control unit generates the addresses and performs other functions, such as read/write and stack
operations.

CONTROL UNIT

STACK

SO S1

SO S1

431
MULTIPLEXER

431
MULTIPLEXER

0
0
1
1

DATA IN

COMPOUT 0

COMPOUT 1

COMPOUT 2

COMPOUT 3

4

2

ADD-COMPARE-SELECT HIT

F igure 8

designfeature Viterbi codecs

138 edn | February 15, 2001 www.ednmag.com

such as read/write and stack operations.
Once you store all the decision

bits, the hardware is ready to give
the original information. The trace-back
in the trellis is equivalent to tracing back
in the path memory. It is best to start the
trace-back with the lowest state metric,
which the 2-bit register stores at that par-
ticular time. During the subsequent trace-
back operation, the 2-bit register updates
by appending to it the selected decision bit
from the RAM. The 2-bit register forms
the selection lines of the 431 multiplex-
er, which outputs the original information
bit at each time. The LIFO (last-in, first-
out) stack stores this original information,
and the stack reorders and delivers the
original information at the decoder out-
put. You can easily implement the LIFO
stack in a 1631 RAM. In an SRAM-based
FPGA, this implementation results in a
single look-up table.

BIT-ERROR-RATE UNIT

“BER” (bit-error rate) refers to the
number of errors in a data transmission
divided by the total number of bits sent.
For example, 10 kbits are encoded, and 20
kbits enter the noisy channel. Say that the
noisy channel incurs 2000 errors, and you
feed the corrupted data to the Viterbi de-
coder. If the decoder corrects 1700 errors,
the BER50.03. Ideally, you want the BER
to be 0. The BER unit is optional but use-
ful, and it determines the beginning of

the branch word in the received se-
quence. This information helps you de-
termine the start of the valid data at the
receiver end. Figure 9 shows an example
of a BER unit that you can implement.

When the quantization level of the de-
modulator output is greater than two, the
decoding is called soft-decision decod-
ing. The quantization levels are usually
limited to eight (n=3 bits), because more
than eight levels provide little extra gain
but greatly increases the complexity of

the decoder. The output from the de-
modulator can be either in a binary-off-
set format (the unsigned binary num-
bers) or a 2’s-complement format or in
sign-magnitude format. For n53, the 2’s-
complement format gives the output a
range of 24 to `3. For hard-decision
decoding the branch metric is the ham-
ming distance; for soft-decision decod-
ing, it can be the linear or Euclidean dis-
tance. The Euclidean distance for code
rate, 1/C, is:

The optional bit-error-rate unit determines the beginning of the branch word in the received
sequence.

32-BIT
SHIFT

REGISTER OUTPUT

+

+
PATH MEMORY

REGISTER REGISTER

REGISTER REGISTER REGISTER

RECEIVED DATA

1632-BIT
RAM

CONTROL
UNIT

2

F igure 9

THE VITERBI-DECODING ALGORITHM
Qualcomm co-founder Andrew
Viterbi discovered and analyzed
the Viterbi-decoding algorithm.
He derived the algorithm from
the maximum-likelihood concept
of decision theory. Generally
speaking, the decoder chooses a
specific sequence as a transmit-
ted word if the likelihood of the
word’s duplicating the original
transmission is greater than the
likelihood of all the other possi-
ble transmitted words’ matching.
You break down the algorithm in
the computational efforts de-
fined below to reach the possible
transmitted words.

BBrraanncchh wwoorrdd: A branch word
is the output from the encoder

that results from the transition of
one encoder state to another.

BBrraanncchh mmeettrriicc: A branch met-
ric is the distance between the
received sequence and the
branch word. This distance is ei-
ther hamming (for hard-decision
decoding) or Euclidean (for soft-
decision decoding).

PPaatthh mmeettrriicc: An accumulation
of branch metrics forms the path
metric.

TTrreelllliiss: The trellis diagram is
the most important concept in
understanding the Viterbi algo-
rithm. The trellis shows the
states, or so-called nodes, of the
convolutional encoder at differ-
ent times.

The Viterbi algorithm comprises
the following steps:
● Find the path metrics of every

path at each node by adding
the appropriate branch metric
to its corresponding survived
path metric.

● Compare the paths entering
each node (two, in the case
of K53) and select the one
with the smallest path metric.
This path is the surviving path
metric. Perform this step in
parallel for 2K-1 states.

● Repeat this procedure until
you reach the end of the
trellis.

As you reach the end of the trel-
lis, all the paths merge to a com-

mon state. Hence, only one path
survives; tracking that path, you
can obtain the original informa-
tion. Usually, the depth of the
trellis is five times the constraint
length. An increase in computa-
tional resources with no signifi-
cant performance advantage
deepens the trellis.

REFERENCE

Viterbi, Andrew, “Error bounds
for convolutional codes and an
asymptotically optimum decod-
ing Algorithm,” IEEE Transactions
on Information Theory, Volume
IT 13, April 1967, pg 260.

designfeature Viterbi codecs

140 edn | February 15, 2001 www.ednmag.com

which, simplifies to

where, SD
n
5soft-decision input, and

G
n
5the branch word for each path.
For a rate of 1/2, the above equation

becomes:

Bits are transmitted as signed antipo-
dal signals. That is, zero is transmitted as
a positive voltage, and one is transmit-
ted as a negative voltage. So you can sim-
ply reduce the above equation to the sum
and difference of the received inputs.

For R=1/2, you need to calculate only
two branch metrics, because the other
two are simply the inverse of that calcu-
lation. So, in each slice of the ACS, you
use one adder and one subtracter. In sim-
plifying the above equation you ignore a
minus sign, so you must maximize the
path metric; that is, you must select the
larger of the two branch metrics. The rest
of the hardware details are the same as
those for the hard-decision decoder.

FPGAs from Xilinx, Altera, Actel, and

Atmel are general-purpose designs,
meaning that you can implement any
feasible digital system with these devices.
Feasible digital systems include Viterbi
decoders, which are important compo-
nents of communication systems. An-
other reconfigurable device for Viterbi-
decoder implementation is Chameleon
Systems’ (www.chameleonsystems.com)
CS2000 family of reconfigurable com-
munication processors. These devices in-
clude a 32-bit RISC processor, blocks of
embedded memory, a reconfigurable-
processing fabric, and many I/O pins. Be-
cause FEC relates to communication sys-
tems, chameleon processors are well-
suited for FEC algorithms’ hardware im-
plementation. You can also implement a
soft-decision Viterbi decoder in the
CS2000’s reconfigurable-processing fab-
ric (Figure 10).

Viterbi techniques are just one of the
error-correction schemes that advanced
communications systems use. Part two of
this article investigates the theory and
implementation of Reed-Solomon
codecs.k

References
1. Shung, Bernard C, Paul H Siegel,

Gottfried Ungerboeck, and Hemant K

Thapar, “VLSI Architectures for Metric
Normalization in the Viterbi Algorithm,”
IBM Corp, IEEE-1990.

Authors’ biographies
Syed Shahzad Shah is the CEO of
Chameleon Logics (Islamabad, Pakistan).
He has a master's degree in electrical en-
gineering and more than six years of ex-
perience in VLSI design. His areas of in-
terest and expertise are forward-error
correction, ASICs/FPGAs, DSP algorithms
in FPGAs, and digital-communication
systems.

Saqib Yaqub holds a bachelor's degree in
electrical engineering and works for
Chameleon Logics as an FPGA core engi-
neer. He has more than one year of expe-
rience in designing FPGAs and has expe-
rience in forward-error correction and
DSP algorithms in FPGAs.

Faisal Suleman holds a bachelor's degree
in electrical engineering and works for
Chameleon Logics as an FPGA core engi-
neer. He has more than one year of expe-
rience in designing for FPGAs and has ex-
perience in forward-error correction and
DSP algorithms in FPGAs.

You can use Chameleon’s CS2000 reconfigurable-processing fabric to implement a soft-decision Viterbi decoder.

SYMBOL-
INPUT

CONTROL

BRANCH-
METRIC-

GENERATOR
CIRCUIT

BRANCH-
METRIC-

DISTRIBUTION
CIRCUIT

INPUT
SYMBOLS

PCI INTERFACEPCI BUS
ARC RISC

PROCESSOR
FLASH

EEPROM

SDRAM

OPTIONAL OFF-CHIP
COMPONENTS

EXTERNAL MEMORY BUS

OPTIMAL-PATH-MEMORY-
FORWARDING CIRCUIT

CONFIGURATION
BUS

SLICE 3 DATAPATH

SLICE 2 DATAPATH

SLICE 1 DATAPATH

PATH-METRIC
MEMORY

BRANCH-
METRIC
MEMORY

OPTIMAL-
PATH

MEMORY

PATH METRIC
ADD-COMPARE-
SELECT CIRCUIT

OPTIMAL-PATH-
MEMORY-UPDATE

CIRCUIT

SLICE 0 DATAPATH

F igure 10

.GSDGSDDISTANCE_LOCAL 1100 +=

[] ,GSDDISTANCE_LOCAL
21C

0n
nn∑

=
=

1

1

.GSDDISTANCE_LOCAL
1C

0n
nn∑

=
=

1

