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NOW THAT YOU’VE BRUSHED UP ON ERROR-CORRECTING

CODES IN PART 1: VITERBI CODECS (FEB 15, 2001), UNCOVER

THE THEORY AND HARDWARE IMPLEMENTATION OF A 

REED-SOLOMON CODEC.

Reed-Solomon coding is a type of forward-error
correction that is used in data-transmission
(vulnerable to channel noise) plus data-storage

and -retrieval systems. By adding redundant data be-
fore transmission, Reed-Solomon codecs (en-
coders/decoders) can detect and correct errors with-
in blocks of data. The design methodology for the
implementation of a Reed-Solomon codec requires
you to:

●  understand Reed-Solomon codecs,
●  implement the entire codec process in Matlab,
●  break down the codec process into modules,
●  develop hardware for each module,
●  tailor the process for hardware efficiency,
●  test each module,
●  connect the modules, and
●  test and verify the Reed-Solomon

codec.
Each of these steps is important, and miss-

ing one results in developing hardware that does not
work the first time and must be recreated. For ex-
ample, it is critical to understand the mathematics
behind the Reed-Solomon-codec process. Simula-
tion programs, such as Matlab, help you quickly and
completely understand the Reed-Solomon process
without knowledge of the hard-
ware. Once you build your
confidence, you can then de-
velop hardware to represent each of
the equations.

BLOCK CODES

Reed-Solomon codecs operate
on blocks of data in which infor-
mation is divided into frames
(blocks), and the encoder uses only
the current frame to produce its
output. These codes are generally
designated as (n, K) block codes: K
is the number of information sym-
bols input per block, and n is the
number of symbols per block that
the encoder outputs. The term
“symbol” may represent one bit or

a number of bits. Your concern is a subclass of block
codes called linear block codes. You can define lin-
ear codes as those codes in which the sum of two
code words is another code word, and the product
of any code word by a scalar (field element) is also a
code word. Further, an important subclass of linear
block codes is cyclic codes. A code is cyclic if by cycli-
cally shifting the components of the code word one
place to the right, you get another valid code word
(Reference 1).

GALOIS FIELDS

A powerful algebraic structure, known as a field,
is a set in which you can add, subtract, multiply, and
divide. Several well-known fields are the set of real
numbers and the set of complex numbers. This ar-
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ticle concerns fields with a finite
number of elements. You call a
field with q elements a finite
field or a Galois field
and denote it by the la-
bel GF(q). For example, GF(2)
has two elements {0,1}. The
most powerful and important
ideas of coding theory are based
on the arithmetic systems of the
Galois fields. (Reference 1 con-
tains a detailed analysis of Ga-
lois fields.)

An extension field, denoted
as GF(pm), is a finite field in
which the number of elements
is an integer power of a prime
number, p (Reference 2). To de-
termine the properties of ex-
tension fields, consider the ex-
tension fields for p52. In
GF(2m) fields, there is always a
primitive element }, such that
you can express every element
of GF(2m) except zero as a pow-
er of }. You can generate every
field GF(2m) using a primitive
polynomial over GF(2), and the
arithmetic performed in the
GF(2m) field is modulo this
primitive polynomial.

Addition and subtraction operations
are the same in GF(2m) fields, and adding
any field element to itself yields a zero
field element. In the case of GF(23), the
primitive polynomial of degree 3 that
you can use to generate the elements of
GF(23) is given as p(X)5 X31X11.

Note that p(X) is a polynomial over
GF(2), as the coefficients of the variables
X3 and X are the members of GF(2),
namely 0 or 1. Let } be a primitive ele-
ment of GF(23). Because } is a root of
p(X), }31}1150, and according to the
above properties, }35}11.

Now, applying the above result and the
above properties, you can
generate all the elements
of GF(23) in terms of pow-
ers of }. The nu-
merical value of }
is purely arbitrary. Using a
polynomial representa-
tion, you can assign the
values in Table 1 to field
elements.

The addition of two
field elements is modulo
the primitive polynomial

p(X). You can represent every field ele-
ment as a polynomial over GF(2) of a de-
gree less than or equal to 2 (generally,
m21). Also, the polynomial representa-
tion of field elements facilitates the addi-
tion process: Simply add the polynomial
coefficients of field elements modulo 2 to
get the result. The binary notation is a di-
rect consequence of polynomial notation,
showing the coefficients of the polyno-
mial for respective powers of X. For ex-
ample, to add }2 to }3, modulo 2 add 100
and 011 to get 1115}5.

You multiply two field elements by
adding the powers of } modulo 232157

(generally, 2m21). For ex-
ample, }4X}65}10mod(7)5}3.
Higher powers of } simply re-
peat the pattern. So, }75
}0,}85}, and so on.

RS CODES

BCH (Bose-Chadhuri-Hoc-
quenghem) codes are linear
cyclic block codes that allow
multiple-error correction.Reed-
Solomon codes are a special
nonbinary (more than 1 bit
per symbol) subclass of BCH
codes that achieve the largest
possible code minimum dis-
tance. For nonbinary codes,
you define the distance be-
tween two code words as the
number of nonbinary symbols
in which the sequence differs.
Because the minimum dis-
tance is the distance between
an all-zero code word and the
code word closest to it, the
minimum distance of a linear
block code is equal to the min-
imum number of nonzero
symbols occurring in any code
word excluding the all-zero
code word (Reference 3).

Reed-Solomon code is specified as an
Reed-Solomon (n,K) code, where n is the
number of symbols per block that the en-
coder outputs; K is the number of infor-
mation symbols you input to the en-
coder; n2k52t is the number of parity
symbols that the encoder adds to each
block; t5(n2k)/2 is the maximum num-
ber of symbol errors that the Reed-
Solomon(n,K) code can correct in each
block anywhere in the block; and mini-
mum distance is d

MIN
5n2k11 (Figure

1).
Reed-Solomon codes are the algebra-

ic codes in which the polynomials over

A flow chart for the Berlekamp-Massey algorithm can correct both
errors and erasures.
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Field adders and multipliers dominate the hardware architecture necessary to calculate GG(X) for a Reed-
Solomon(15,9) code. 
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GF(2m) fields represent the information
to be encoded and the encoded
code word. Simply put, the input
and output information consists of sym-
bols, which are elements of GF(2m)
(0,1,},}2, and others). These symbols are
arranged as coefficients in the polyno-
mial, and the power of the polynomial
variable X indicates the order in which
the encoder and decoder receive and out-
put the associated symbol. For example,
an information polynomial, }X21}3X
1}6 , shows that } is the symbol that you
first input to the encoder, then }3, and
lastly, }6. Also for Reed-Solomon(n,K)
code, n52m21 if m54, n515, and the
Galois field you use to encode or decode
the Reed-Solomon(n,K) code is GF(24).
All symbols are elements of GF(24) , all
polynomials are polynomials over
GF(24), and you use the arithmetic for
GF(24) during the encoding and decod-
ing process.

ENCODING REED SOLOMON(N,K) CODES

The key equation defining the system-
atic encoding operation for Reed-
Solomon(n,K) code is:

c(X)5 i(X)Xn-k 1
[ i(X)Xn-k]mod g(X),

where c(X) is the code-word polynomi-
al of degree n21, i(X) is the information
polynomial of degree k21, [ i(X)Xn-

k]mod g(X) is the parity polynomial of
degree n2k21, and g(X) is the code-
generator polynomial of degree n2k.

Systematic encoding means that, after
encoding, the resulting code word is such
that the original information symbols are
inserted at the higher order coefficients
of the code word and then select parity
symbols to force a legitimate code word
c(X).

In general, the polynomial g(X) for
Reed-Solomon(n,K) codes is: g(X)5
(X-}j)(X-}j11).......(X-}j12t-1), and, if
j=1, g(X)5g

n-k
Xn-k1g

n-k-1
Xn-k-11........g

2

X21g
1
X1g

0
.

You can choose any inte-
ger value for j; however, it’s
conventional to use j51.
Sometimes, by choosing
j51, you can reduce the
number and the cost of cir-
cuit components. Note that
all of the above polynomi-
als, including g(X) are
polynomials over GF(2m).
An important property of

g(X) is that it exactly divides c(X); that is,
dividing c(X) by g(X) yields a remainder
of zero.

To visualize hardware that implements
Equation 1, you must understand the
operations i(X)Xn-k and [i(X)Xn-k]mod
g(X). As previously mentioned, for sys-
tematic encoding, you place information
symbols as the higher power coefficients.
So, i(X)Xn-k means that you “shift” infor-
mation symbols toward the higher pow-
ers of X, from n21 down to n2k.You fill
the remaining positions from power
n2k21 to 0 with zeros. Consider, for ex-
ample, the same polynomial as above:

i(X)5}X21}3X1}6.
Multiplying the above equation by X4

yields:
i(X)X45}X61}3X51}6X41

0X310X210X10.
The second term of Equation 1,

[i(X)Xn-k]mod g(X), is the remainder
when you divide polynomial i(X)Xn-k by
the polynomial g(X). Therefore, you
need to design a circuit that performs
two operations: a division and a shift to
a higher power of X. Linear-feedback
shift registers enable you to easily imple-
ment both operations.

Figure 2 shows a general diagram of
the encoder for Reed-Solomon(n,K)
code. The main design task is to imple-
ment the GF(2m) multiplication and ad-

dition circuits, apart from some control
circuitry or logic. Remember that you
can add any two elements from the
GF(2m) field by modulo 2 adding their
binary notations, which resembles the
XOR hardware operation. So your finite-
field adder simply consists of XOR gates.
A GF(24) adder, for example, needs four
two-input XOR gates to add two symbols
over GF(24). You can easily map the
equation for the XOR operation into the
LUT (look-up-table) architecture of an
FPGA.

The finite-field multiplier requires you
to put some calculations in equation
form. This task may become tedious
when m increases in GF(2m) and thus in-
creases the hardware requirements. As an
example, consider the multiplication of
two field elements from GF(23). The ele-
ments are represented in polynomial
form as:

b
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1
z1g

0
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b
2
5 l

2
z21l
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0
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2
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0

can be 0 or 1. Also, recall that the primi-
tive polynomial for GF(23) is p(z)5
z31z11. Use this primitive polynomial
to reduce the product polynomial’s de-
gree to 2:
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Now, using z35z11, you can normal-
ize the powers down to 2:
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The above equation implements the
variable field multiplication in GF(23).
The coefficient with z2 represents the
most significant bit of the product, and
the last coefficient represents the least

significant bit. Note that the
plus sign, adding various
terms of a coefficient, repre-
sents an XOR operation, not
an OR operation. The prod-
uct terms, however, refer to
an AND operation. This
polynomial approach re-
duces the labor of finding a
general equation for multi-
plication. Otherwise, you
would have to construct a

The hardware for computing one Sj for a Reed-
Solomon(15,9) code uses a finite-field-feedback
multiplier.
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TABLE 1—FIELD-ELEMENT-VALUE ASSIGNMENTS
USING A POLYNOMIAL REPRESENTATION

Exponential notation Polynomial notation Binary notation
0 0 000

aa0 1 001
aa X 010
aa2 X2 100
aa3 X+1 011
aa4 X2+X 110

aa5=aa3+aa2=aa2+aa+1 X2+X+1 111
aa6=aa3+aa2+aa=aa2+1 X2+1 101

(1)

(2)
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Boolean truth table with six inputs, three
outputs, and maps for each output. For
larger values of m, however, either ap-
proach seems monotonous.

You can easily map Equation 2 into
the LUT architecture of an FPGA.
You can manually optimize the
recurring terms in various coefficients,
or use a synthesis tool to do it automat-
ically. In general, a Boolean equation of
four variables consumes one four-input
LUT of an FPGA with a LUT-based ar-
chitecture. You map the larger variables
to multiple LUTs. The key to speed and
area optimization is understanding how
your synthesis tool maps the equations
into the LUT. The adders and multipliers
will help both the encoding and decod-
ing processes.

The encoder block diagram shows that
one input to each multiplier is a constant
field element, which is a coefficient of the
polynomial g(X). For a particular block,
you input the information polynomial
i(X) to the encoder symbol by symbol.
These symbols appear at the output of
the encoder after a desired latency, where
control logic feeds it back through an
adder to produce the related parity. This
process continues until all of the K sym-
bols of i(X) are input to the encoder.
During this time, the control logic at the
output enables only the input data path,
while keeping the parity path disabled.
With an output latency of, say, one clock
cycle, the encoder outputs the last infor-
mation symbol at K11th clock pulse.
Also, during the first K clock cycles, the
feedback control logic allows you to feed
the adder output to the bus. After you
have input the last symbol into the en-
coder (at the Kth clock pulse), you can-
not immediately start the next block; you
must wait at least n2K clock cycles. Dur-
ing this waiting time, the feedback con-
trol logic disables the adder output from
being fed back and supplies a constant
zero symbol to the bus. (Remember that
this step corresponds with the operation
i(X)Xn-k.) Also, the output control logic
disables the input data path and allows
the encoder to output the parity symbols
(K12th to n11th clock pulse). Hence,
you can start a new block at the n11th
clock pulse.

RS DECODERS

Although you can use the convention-
al techniques for decoding the cyclic

codes to decode the BCH codes, several
better decoding algorithms have been de-
veloped. The decoding is based on the Pe-
terson-Gorenstein-Zierler decoder algo-
rithm (Reference 1). This algorithm
requires matrix inversion, which may be
cumbersome if you are designing a large
error-correcting decoder. Therefore, oth-
er techniques were developed. Elwyn
Berlekamp found one such technique by
exploiting the organized structure of the
aforementioned matrix. You can use
Berlekamp’s technique to solve the key
equation (that is, to find the error loca-
tor/connection polynomial) in the de-
coding process (Reference 1). (The fol-
lowing approach deals only with the
necessary equations and their hardware
implementation. See references 1 and 4
for a more mathematical treatment of the
subject.) 

The decoding procedure for Reed-
Solomon codes involves determining the
locations and magnitudes of the errors in
the received polynomial r(X). Locations
are those powers of X (X2, X3, and others)
in the received polynomials whose coef-
ficients are in error. Magnitudes are sym-
bols that you add to the corrupted sym-
bol to find the original encoded symbol.
These locations and magnitudes consti-
tute the so-called error polynomial. Also,
if you have built the decoder to support
erasure decoding, then you must also
find the erasure polynomial. An erasure

is an error with a known location. Thus,
your only task is to find the magnitudes
of the erasures. A Reed-Solomon(n,K)
code can successfully correct as many as
2t5n2K erasures if no errors are pres-
ent. With both errors and erasures pres-
ent, the decoder can successfully decode
if n2KM2v1f, where v is the number of
errors, and f is the number of erasures.

The received polynomial r(X) is:
r(X)5r

n-1
Xn-11r

n-2
Xn21...........

1r
2
X21r

1
X1r

0
.

The degree of r(X) is n21, which is the
same as c(X). The following equations
show the decoding procedure and hard-
ware implementation of the main equa-
tions.

Assume that the received vector r(X)
has f erasures and that the erasure loca-
tors are: Y

1
5}j1, Y

2
5}j2, ... Y

f
5}jf.

The receiver/demodulator provides
these erasure locations. You decode the
received polynomial according to the fol-
lowing steps:

1. Compute the erasure locator poly-
nomial according to the equation:

2. Replace the erased coordinates
(symbols) with zeros and compute the 2t
syndromes. You find the syndromes by
evaluating the received polynomial r(X)
(with erasure positions filled with zero
symbols) at the 2t roots of the generator

The hardware that implements a Reed-Solomon(15,9) code includes multipliers feeding the J and LL
registers, an output adder representing the SS symbol, and control logic.
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polynomial g(X):
S

j
5 r(}j) j51,2.....2t.

3. Compute the modified
syndrome polynomial accord-
ing to equation:

J(X)5(G(X)[11
S(X)]-1)mod X2t11,

where S(X) is the syndrome
polynomial defined by

4. Now, to solve the key
equation (to find the er-
ror locations), apply the
Berlekamp-Massey algorithm.
Doing so gives you the error lo-
cator/connection polynomial
L(X). Figure 3 contains a flow
chart to implement the Berlekamp-
Massey algorithm for both errors and
erasures.

5. Find the roots of L(X) to find the er-
ror locations (X

k
-1 and X

k
) . This step is

known as a Chien search.
6. Determine the error/erasure poly-

nomial using the equation:
C(X)5L(X)G(X).

7. Determine the error magnitude
polynomial using :
V(X)5L(X)[11J(X)]mod X2t11.

8. Determine the error and era-
sure magnitudes (Forney’s algorithm)
using:

The derivative of any polynomial over
GF(2m) is given by:

u(X)5u
v
Xv1u

v-1
Xv-11...........1

u
2
X21u

1
X1u

0
,

which is a vth degree polynomial. You
can then define u/(X) as :

where ju
j
50 when j is even and ju

j
5u

j

when j is odd, for example, for the poly-
nomial u(X)5}X41}2X31}X21X1}5,
u/(X) 5 }2X211.

9. By combining the error (erasure)

magnitudes and locations, you can con-
struct the error (erasure) polynomials
and add them to r(X) to retrieve the code
word.

Some basic points can help you un-
derstand the possible hardware architec-
ture for the above equations. Because you
are dealing mostly with the polynomials,
in hardware you need (v11)xm flip-
flops to represent a polynomial of degree
v with coefficients (symbols) of m bits.
Also, the subscripts you use to represent
coefficients in any polynomial are the
same as their corresponding degree of
variable X (for example, u

2
X2 and u

n-1

Xn-1). You carry out polynomial multi-
plication normally, except that you per-
form additions and multiplications 
over GF(2m) in all terms.

Also, all the multiplication and divi-
sion operations in the above equations
are defined over the GF(2m) fields, not
over ordinary multiplication or division
operators, and, therefore, plus and minus
signs are interchangeable.

Now, consider a brief interpretation
and hardware realization of the afore-
mentioned equations.

requires the computation of an f-degree
polynomial. The erasure locations are ex-
pressed as powers of }. For example, if
you declare that the demodulator should
erase the coefficient of X4 in the received
polynomial, then the corresponding Y

i
is

}4. Because you know the maximum val-

ue of f (which is 2t) for a Reed-
Solomon(n,k) code, you know
the maximum degree of G(X),
which also equals 2t. Therefore,
you need (2t11)m flip-flops,
arranged in groups of m bit
registers, to represent the poly-
nomial G(X). Further, in this
case, the lowest degree coeffi-
cient (G

0
) is always symbol 1, so

you need not calculate it. This
simplification reduces the
number of flip-flops to 2tm. A
practical decoder receives the
erasure locations one by one, so
the degree of G(X) increases by
1 every time you add an era-
sure. The actual degree of G(X)
thus indicates the number of
erasures received. If, for exam-
ple, you receive f erasures,

where f,2t, then the degree of G(X) is f,
meaning the coefficient of Xf is a nonze-
ro symbol, and the coefficients of degrees
of X greater than f are zero symbols. Ex-
panding this equation term by term, you
detect symmetry in the equation’s archi-
tecture, which helps you reduce the
amount of hardware. This reduction is
suitable for FPGAs. As stated earlier, you
can find field adders and multipliers in
almost all of the above equations. Figure
4 shows a diagram of the hardware ar-
chitecture to calculate G(X) for a Reed-
Solomon(15,9) code.

The equation S
j
5 r(}j) for j51,2...2t is

basically a power-sum computation. It
involves the dynamic multiplication of
the incoming symbol with powers of }
plus an accumulation process to com-
pute one S

j
. For example, consider an

evaluation of r(X) at },}2, and so on; re-
place any erasure locations with zero
symbols:

S
1
5r(})5r

n-1
}n211r

n22
}n221 . . .

1r
2
}21r

1
}1r

0
, and S

2
5r(}2)5r

n21

}n221r
n22

}n241...1r
2
}41r

1
}21r

0
.

As you can see, the main task is to dy-
namically compute various powers of }.
You can accomplish this computation
with finite-field-feedback multipliers.
These multipliers use the fact that
}n213}n215}2n225}(2n22)mod n5}225
1. }225}n3}25}n22. These equations
show that if you tie one input of a mul-
tiplier to the power of } that you see with
r

n-1
, for a particular S

j
; initialize the mul-

tiplier output with the same power of };
and feed back the multiplier output to its

This hardware calculates T(X) for a Reed-Solomon (15,9) code, accord-
ing to the equation T(X) = LL(X)-DDrXB(X).
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second input, then the next output will
be the power of } that S

j
requires. Fig-

ure 5 shows the hardware for computing
one S

j
for a Reed-Solomon(15,9) code.

Parallel implementation requires 2t
units. You can also compute the syn-
dromes by using minimal polynomials
(Reference 1).

As stated earlier, J(X)5(G(X)[11
S(X)]-1)mod X2t11.

In the previous equation, S(X) is the
syndrome polynomial containing S

j
.You

can arrange these S
j
terms as a polyno-

mial as per Equation 4. You can now ex-
pand the term (G(X)[11S(X)]21) to
yield a 2t1f-degree equation, and the
mod X2t11 operation reduces the
degree to 2t. This reduction
means you need only compute the re-
maining terms in hardware. Also, care-
ful inspection of Equation 3 reveals that
J

0
is always symbol 0. You can imple-

ment the final form of Equation 3 in par-
allel either by employing as many adders
and multipliers as the equation indicates
or by computing J(X) in a more con-
trolled or serial fashion to minimize the
hardware requirements.

THE BERLEKAMP-MASSEY ALGORITHM

The most important and perhaps the
most difficult part of Reed-Solomon de-
coding is solving the key equation using
the Berlekamp-Massey algorithm. You
can also use the Euclidean algorithm
(Reference 1). The flow chart in Figure 3
derives from references 1 and 4. Here
again B(X), T(X), and L(X) are polyno-
mials; D

r
represents a field element, so it

requires m bits in hardware; L is a regis-
ter whose bit size you can select by look-
ing at the value of t (maximum cor-
rectable errors); and r controls the
algorithm flow. In hardware, it depicts
the control designed for the algorithm.
B(X) is a t degree polynomial, so it re-
quires (t11)m flip-flops. T(X) and L(X)
are also t-degree polynomials, but they
require just tm flip-flops, because
T

0
5L

0
51. The major equation in Figure

3 computes the discrepancy D
r
, given by:

The second term on the right reduces
to a zero symbol when L50. To obtain
the hardware implementation of this
equation, you use the same variable field
multipliers but with an enable control,

so that the multiplier gives the normal
product at the output when its enable is
high and gives a zero symbol at the out-
put when enable is low. You construct
this enable logic using the bits repre-
senting L. Initially, you load the polyno-
mial J(X) into a register with m LSBs of
the register containing the coefficient
J

f11
. With each iteration of r, this regis-

ter is circular-right shifted over m bits. In
general, you need t multipliers to form
the products inside the summation sign.
Figure 6 shows the connections of the
multiplier inputs to the J and L regis-
ters, along with the output adder repre-
senting the S and the control logic for a
Reed-Solomon(15,9) code. Note that
every time the BM algorithm starts, the
variables are initialized as in the first
block in Figure 3, and you load polyno-
mial J(X) in the register as described
above. The more erasures, the fewer it-
erations that the BM algorithm takes.
The maximum number of iterations
when f50 is 2t.

The equation T(X)5L(X)2D
r
XB(X)

is simple to implement. As stated earlier,
multiplying X by a polynomial means
shifting the polynomial left so as to move
every coefficient to one higher power po-
sition. You can implement this step in
hardware without actually shifting B(X),
because you always insert an m-bit zero
symbol at the m LSBs of the B(X) regis-
ter during the XB(X) operation. Figure 7
shows simple hardware calculating T(X)
for a Reed-Solomon(15,9) code. You can

implement the remaining equations in
the same way.

Although you don’t shift B(X) to com-
pute T(X), you must shift B(X) when you
perform operation B(X)5XB(X), be-
cause you must change the value of B(X).
During this shift operation, you lose the
m MSBs of B(X) register. To find the in-
version of a field element (for example,
D

r
-1), it is useful to construct a Boolean

truth table and find the equations of the
output bits. All of the operational blocks
in the BM unit work in the required se-
quence by a perfectly designed control.

The end result of the BM unit is a poly-
nomial L(X). The check “deg L(X)5L”
provides a clue as to whether the decoder
will successfully decode r(X) or declare
a failure. Remember that although this
check is necessary (to proceed further), it
is insufficient to determine whether the
decoder will decode correctly. For more
on failures, see Reference 1. The degree
of L(X) indicates the number of errors
that actually occurred (provided errors
are less than or equal to t, meaning that
the decoder will decode correctly). Note
that in hardware, to check the degree of
a polynomial, locate the first nonzero
symbol starting from the most significant
position of the polynomial register. Once
you find it, you can easily determine the
actual degree of the polynomial.

FINDING ERROR LOCATIONS

In the Chien search, you evaluate the
polynomial L(X) at all the field elements

This hardware finds the roots of L(X) for a Reed-Solomon(15,9) decoder, according to the equation
T(X) = L(X)-DDrXB(X). 
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of GF(2m) you use for a giv-
en Reed-Solomon(n,k)
code. You can exclude
the zero element because it
cannot be a root. For exam-
ple, the roots }2 (5X

1
-1) and

}4(5X
2

-1) for a Reed-
Solomon(15,9) code are ac-
tually inverse error locations
(that is, X

1
5}-251. }—

25}15.}-25}13 and similarly
X

2
5}-45}11). The coeffi-

cients of X13 and X11 are,
therefore, corrupted in the
received polynomial r(X).An
inability to find as many
roots as the degree of L(X) in
a given GF(2m) reflects a de-
coding failure (Reference 1).
Remember that the decoder
may signal a decoding failure
depending on the number
and distribution of errors in
a block.

The hardware’s task is to
find the value of L(X) at different pow-
ers of }. One way to find it is by using cir-
cuits that generate the squares, cubes, and
other powers of an input field element,
multiplying by respective values of L

j

and adding all the terms. If the sum eval-
uates to a zero symbol, then you regard
that field element as a root of L(X). For
example, consider the hardware that
finds roots of L(X) for Reed-
Solomon(15,9) code, and assume that
the highest degree of L(X) is t53.
Boolean tables can help you construct the
square- and cube-generator circuits in
the same manner as the inversion circuit.
Because L

0
always equals 1, you can de-

termine whether the addition result ex-
cluding symbol 1 equals 1. Figure 8
shows the general hardware that finds
L(X) roots for a Reed-Solomon(15,9)
code.

Determine the error/erasure polyno-
mial using the equation:

C(X)5L(X)G(X).
Determine the error magnitude polyno-
mial using :

V(X)5L(X)[11J(X)]mod X2t11,
and C(X) 5L(X)G(X).

Notice that you don’t need Equation
5’s C(X) in later calculations. You need
its derivative C/(X). So you can always
instead implement the simpler equation
that directly evaluates the derivative
C/(X) according to Equation 7. You can

implement Equation 6 in a similar fash-
ion as Equation 3. Again, you can adopt
a parallel or serial approach according to
your design’s requirements. The ap-
proach you choose directly affects the
FPGA resources.

THE FORNEY’S ALGORITHM

Using the following equations:

you can compute the error/erasure mag-
nitudes using the corresponding loca-
tions. The magnitudes are definitely field
elements. The equations are identical,
and by carefully choosing hardware, you
can merge many operations together in
the two equations. The previously dis-
cussed Chien-search unit directly evalu-
ates the inverse error locations X

k
-1, and

you also have access to the erasure loca-
tions Y

k
beginning at the start of decod-

ing. By rearranging the above two equa-
tions, you get:

The numerators deter-
mine the value of V(X) at
inverse error and erasure
locations, so the same unit
can handle both numera-
tors. The hardware to de-
termine values of V(X) at
X

k
-1/Y

k
-1 resembles the

hardware in Figure 8 for the
Chien-search unit. Similar-
ly, the denominators also
resemble each other. The
hardware is the same for the
numerator, but you multi-
ply the result by the corre-
sponding X

k
-1/Y

k
-1. Note

that rearranging the equa-
tions eliminates the need to
determine X

k
from X

k
-1, al-

though you must still eval-
uate Y

k
-1 from Y

k
. Finally,

you can divide the numer-
ator by the denominator by
inverting the denominator
and multiplying it by the

numerator. A register stores the resulting
error and erasure magnitudes. If a de-
nominator term evaluates to a zero sym-
bol, meaning there is no error or erasure
at that location, you can assign a zero
symbol to its inversion. Although math-
ematicians might disagree, assigning zero
to the inversion won’t introduce errors,
and hence the error/erasure magnitude
is zero at this X

k
-1/Y

k
-1.

As stated in the beginning of the de-
coder section, you retrieve the code word
c(X) by adding the error and erasure
polynomials to the received polynomial
r(X). You, therefore, must also pipeline
the polynomial r(X) separately in addi-
tion to passing it through the main de-
coding units (a zero symbol is pipelined
for an erasure). In FPGAs, you can easi-
ly accomplish this pipelining by using
RAMs as shift registers, which greatly re-
duces hardware. This unit’s hardware im-
plementation is tricky. Because you know
error and erasure locations and magni-
tudes, your task is to construct the error
and erasure polynomials. On paper, this
task is easy, but in hardware it is difficult
and costly. Assume that you have the fol-
lowing polynomials for error and era-
sures for Reed-Solomon(15,9) code:
e(X)5}2X81}5X3, f(X)5}12X101}X2,
and c(X)5r(X)1e(X)1f(X). These poly-
nomials show that you add }2,
}5 ,}12 , and } to r(X) at the locations X8,

Hardware to compute the final addition of the error and erasure polynomials
to the received polynomial results in a corrected output polynomial. 
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X3, X10, and X2 to retrieve a(X). Note that
error/erasure direct or inverse locations
can be any field elements except zero (for
example, location }0 corresponds to X0 is
a constant term in a polynomial), but be-
cause hardware is fixed to accommodate
maximum error/erasure locations, a zero
symbol in a register indicates the state of
a register, not an error/erasure location.
Also, all error and erasure locations are

unique. The technique used here em-
ploys the inverse error/erasure locations
to perform the operations in the above
equations. The idea is to generate field
symbols }n-1,}n-2,...},}0 and dynamical-
ly compare every element with symbols
of the register containing inverse error
and erasure locations. Only a maximum
of one comparison can succeed at a par-
ticular power of }, thereby enabling }’s

corresponding magnitude symbol in the
error and erasure magnitude registers.
Logic controls the timing of pipelined
data r(X) so that the coefficient with the
proper power of X arrives at the adder in-
put at the same time that its correspon-
ding error/erasure magnitude (if any) ar-
rives at the other input of the adder.
(Remember that the decoder first out-
puts the coefficient with Xn-1.) Figure 9
shows a simplified hardware diagram for
the aforementioned technique.

Programmable-hardware devices are
the best choice for Reed-Solomon-codec
implementation, because these devices
contain an abundance of the registers
that the hardware-implementation
process requires. They also allow you to
implement a pipelined design. Secondly,
parallel realization of the equations is
possible and helps you meet speed con-
straints.You can easily map the equations
used for multipliers and power/inversion
circuits into the LUT architecture of FP-
GAs. Moreover, you can use RAMs to
further reduce hardware resources. The
algorithms presented above support era-
sure decoding, which consumes more re-
sources than error-only decoding. The
equations presented above are general in
nature, and from them you can easily ex-
tract the equations for error-only decod-
ing. Control also plays an important role
in Reed-Solomon-codec implementa-
tion. The timing of various functional
blocks should be immaculate to proper-
ly transfer data and results between var-
ious blocks. k
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